Skip to content

分析

试客联盟的登录相对简单,虽然做了rsa加密,但没有进行js混淆,所以分析起来相对简单一些。

1. 访问试客联盟的登录页面,https://login.shikee.com/ ,分析其密码加密的过程

1832670569821110272.png

2. 首先找加密过程的请求,是在哪里进行加密的,用的什么加密方式等等,这些就是我们要干的事儿

1832670571637243904.png

3. 通过上一步的确定疑似加密的入口,我们就通过这个点开始往前找具体的加密部分代码

1832670572790677504.png

4. 扣代码吧

1832670573851836416.png

5. 其实,对于未混淆的js代码,可以利用全局按关键字搜索一下,也能很快的定位到加密代码;如果全局搜索一遍,也没发现什么可疑的加密代码,一般说明是进行js混淆了,这个时候,可以选择上面的方式,通过请求调用栈慢慢根据调用过程,慢慢结合断点的去抽丝剥茧的找执行过程,最终定位到加密代码。

1832670574447427584.png

6. 具体实现

先上js代码,比较长:

javascript
var biRadixBase = 2;
var biRadixBits = 16;
var bitsPerDigit = biRadixBits;
var biRadix = 1 << 16; // = 2^16 = 65536
var biHalfRadix = biRadix >>> 1;
var biRadixSquared = biRadix * biRadix;
var maxDigitVal = biRadix - 1;
var maxInteger = 9999999999999998;

function BarrettMu(m)
{
	this.modulus = biCopy(m);
	this.k = biHighIndex(this.modulus) + 1;
	var b2k = new BigInt();
	b2k.digits[2 * this.k] = 1; // b2k = b^(2k)
	this.mu = biDivide(b2k, this.modulus);
	this.bkplus1 = new BigInt();
	this.bkplus1.digits[this.k + 1] = 1; // bkplus1 = b^(k+1)
	this.modulo = BarrettMu_modulo;
	this.multiplyMod = BarrettMu_multiplyMod;
	this.powMod = BarrettMu_powMod;
}

function BarrettMu_modulo(x)
{
	var q1 = biDivideByRadixPower(x, this.k - 1);
	var q2 = biMultiply(q1, this.mu);
	var q3 = biDivideByRadixPower(q2, this.k + 1);
	var r1 = biModuloByRadixPower(x, this.k + 1);
	var r2term = biMultiply(q3, this.modulus);
	var r2 = biModuloByRadixPower(r2term, this.k + 1);
	var r = biSubtract(r1, r2);
	if (r.isNeg) {
		r = biAdd(r, this.bkplus1);
	}
	var rgtem = biCompare(r, this.modulus) >= 0;
	while (rgtem) {
		r = biSubtract(r, this.modulus);
		rgtem = biCompare(r, this.modulus) >= 0;
	}
	return r;
}

function BarrettMu_multiplyMod(x, y)
{
	/*
	x = this.modulo(x);
	y = this.modulo(y);
	*/
	var xy = biMultiply(x, y);
	return this.modulo(xy);
}

function BarrettMu_powMod(x, y)
{
	var result = new BigInt();
	result.digits[0] = 1;
	var a = x;
	var k = y;
	while (true) {
		if ((k.digits[0] & 1) != 0) result = this.multiplyMod(result, a);
		k = biShiftRight(k, 1);
		if (k.digits[0] == 0 && biHighIndex(k) == 0) break;
		a = this.multiplyMod(a, a);
	}
	return result;
}
var maxDigits;
var ZERO_ARRAY;
var bigZero, bigOne;

function setMaxDigits(value)
{
	maxDigits = value;
	ZERO_ARRAY = new Array(maxDigits);
	for (var iza = 0; iza < ZERO_ARRAY.length; iza++) ZERO_ARRAY[iza] = 0;
	bigZero = new BigInt();
	bigOne = new BigInt();
	bigOne.digits[0] = 1;
}

setMaxDigits(20);

// The maximum number of digits in base 10 you can convert to an
// integer without JavaScript throwing up on you.
var dpl10 = 15;
// lr10 = 10 ^ dpl10
var lr10 = biFromNumber(1000000000000000);

function BigInt(flag)
{
	if (typeof flag == "boolean" && flag == true) {
		this.digits = null;
	}
	else {
		this.digits = ZERO_ARRAY.slice(0);
	}
	this.isNeg = false;
}

function biFromDecimal(s)
{
	var isNeg = s.charAt(0) == '-';
	var i = isNeg ? 1 : 0;
	var result;
	// Skip leading zeros.
	while (i < s.length && s.charAt(i) == '0') ++i;
	if (i == s.length) {
		result = new BigInt();
	}
	else {
		var digitCount = s.length - i;
		var fgl = digitCount % dpl10;
		if (fgl == 0) fgl = dpl10;
		result = biFromNumber(Number(s.substr(i, fgl)));
		i += fgl;
		while (i < s.length) {
			result = biAdd(biMultiply(result, lr10),
			               biFromNumber(Number(s.substr(i, dpl10))));
			i += dpl10;
		}
		result.isNeg = isNeg;
	}
	return result;
}

function biCopy(bi)
{
	var result = new BigInt(true);
	result.digits = bi.digits.slice(0);
	result.isNeg = bi.isNeg;
	return result;
}

function biFromNumber(i)
{
	var result = new BigInt();
	result.isNeg = i < 0;
	i = Math.abs(i);
	var j = 0;
	while (i > 0) {
		result.digits[j++] = i & maxDigitVal;
		i >>= biRadixBits;
	}
	return result;
}

function reverseStr(s)
{
	var result = "";
	for (var i = s.length - 1; i > -1; --i) {
		result += s.charAt(i);
	}
	return result;
}

var hexatrigesimalToChar = new Array(
 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
 'u', 'v', 'w', 'x', 'y', 'z'
);

function biToString(x, radix)
	// 2 <= radix <= 36
{
	var b = new BigInt();
	b.digits[0] = radix;
	var qr = biDivideModulo(x, b);
	var result = hexatrigesimalToChar[qr[1].digits[0]];
	while (biCompare(qr[0], bigZero) == 1) {
		qr = biDivideModulo(qr[0], b);
		digit = qr[1].digits[0];
		result += hexatrigesimalToChar[qr[1].digits[0]];
	}
	return (x.isNeg ? "-" : "") + reverseStr(result);
}

function biToDecimal(x)
{
	var b = new BigInt();
	b.digits[0] = 10;
	var qr = biDivideModulo(x, b);
	var result = String(qr[1].digits[0]);
	while (biCompare(qr[0], bigZero) == 1) {
		qr = biDivideModulo(qr[0], b);
		result += String(qr[1].digits[0]);
	}
	return (x.isNeg ? "-" : "") + reverseStr(result);
}

var hexToChar = new Array('0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
                          'a', 'b', 'c', 'd', 'e', 'f');

function digitToHex(n)
{
	var mask = 0xf;
	var result = "";
	for (i = 0; i < 4; ++i) {
		result += hexToChar[n & mask];
		n >>>= 4;
	}
	return reverseStr(result);
}

function biToHex(x)
{
	var result = "";
	var n = biHighIndex(x);
	for (var i = biHighIndex(x); i > -1; --i) {
		result += digitToHex(x.digits[i]);
	}
	return result;
}

function charToHex(c)
{
	var ZERO = 48;
	var NINE = ZERO + 9;
	var littleA = 97;
	var littleZ = littleA + 25;
	var bigA = 65;
	var bigZ = 65 + 25;
	var result;

	if (c >= ZERO && c <= NINE) {
		result = c - ZERO;
	} else if (c >= bigA && c <= bigZ) {
		result = 10 + c - bigA;
	} else if (c >= littleA && c <= littleZ) {
		result = 10 + c - littleA;
	} else {
		result = 0;
	}
	return result;
}

function hexToDigit(s)
{
	var result = 0;
	var sl = Math.min(s.length, 4);
	for (var i = 0; i < sl; ++i) {
		result <<= 4;
		result |= charToHex(s.charCodeAt(i))
	}
	return result;
}

function biFromHex(s)
{
	var result = new BigInt();
	var sl = s.length;
	for (var i = sl, j = 0; i > 0; i -= 4, ++j) {
		result.digits[j] = hexToDigit(s.substr(Math.max(i - 4, 0), Math.min(i, 4)));
	}
	return result;
}

function biFromString(s, radix)
{
	var isNeg = s.charAt(0) == '-';
	var istop = isNeg ? 1 : 0;
	var result = new BigInt();
	var place = new BigInt();
	place.digits[0] = 1; // radix^0
	for (var i = s.length - 1; i >= istop; i--) {
		var c = s.charCodeAt(i);
		var digit = charToHex(c);
		var biDigit = biMultiplyDigit(place, digit);
		result = biAdd(result, biDigit);
		place = biMultiplyDigit(place, radix);
	}
	result.isNeg = isNeg;
	return result;
}

function biToBytes(x)
	// Returns a string containing raw bytes.
{
	var result = "";
	for (var i = biHighIndex(x); i > -1; --i) {
		result += digitToBytes(x.digits[i]);
	}
	return result;
}

function digitToBytes(n)
	// Convert two-byte digit to string containing both bytes.
{
	var c1 = String.fromCharCode(n & 0xff);
	n >>>= 8;
	var c2 = String.fromCharCode(n & 0xff);
	return c2 + c1;
}

function biDump(b)
{
	return (b.isNeg ? "-" : "") + b.digits.join(" ");
}

function biAdd(x, y)
{
	var result;

	if (x.isNeg != y.isNeg) {
		y.isNeg = !y.isNeg;
		result = biSubtract(x, y);
		y.isNeg = !y.isNeg;
	}
	else {
		result = new BigInt();
		var c = 0;
		var n;
		for (var i = 0; i < x.digits.length; ++i) {
			n = x.digits[i] + y.digits[i] + c;
			result.digits[i] = n & 0xffff;
			c = Number(n >= biRadix);
		}
		result.isNeg = x.isNeg;
	}
	return result;
}

function biSubtract(x, y)
{
	var result;
	if (x.isNeg != y.isNeg) {
		y.isNeg = !y.isNeg;
		result = biAdd(x, y);
		y.isNeg = !y.isNeg;
	} else {
		result = new BigInt();
		var n, c;
		c = 0;
		for (var i = 0; i < x.digits.length; ++i) {
			n = x.digits[i] - y.digits[i] + c;
			result.digits[i] = n & 0xffff;
			// Stupid non-conforming modulus operation.
			if (result.digits[i] < 0) result.digits[i] += biRadix;
			c = 0 - Number(n < 0);
		}
		// Fix up the negative sign, if any.
		if (c == -1) {
			c = 0;
			for (var i = 0; i < x.digits.length; ++i) {
				n = 0 - result.digits[i] + c;
				result.digits[i] = n & 0xffff;
				// Stupid non-conforming modulus operation.
				if (result.digits[i] < 0) result.digits[i] += biRadix;
				c = 0 - Number(n < 0);
			}
			// Result is opposite sign of arguments.
			result.isNeg = !x.isNeg;
		} else {
			// Result is same sign.
			result.isNeg = x.isNeg;
		}
	}
	return result;
}

function biHighIndex(x)
{
	var result = x.digits.length - 1;
	while (result > 0 && x.digits[result] == 0) --result;
	return result;
}

function biNumBits(x)
{
	var n = biHighIndex(x);
	var d = x.digits[n];
	var m = (n + 1) * bitsPerDigit;
	var result;
	for (result = m; result > m - bitsPerDigit; --result) {
		if ((d & 0x8000) != 0) break;
		d <<= 1;
	}
	return result;
}

function biMultiply(x, y)
{
	var result = new BigInt();
	var c;
	var n = biHighIndex(x);
	var t = biHighIndex(y);
	var u, uv, k;

	for (var i = 0; i <= t; ++i) {
		c = 0;
		k = i;
		for (j = 0; j <= n; ++j, ++k) {
			uv = result.digits[k] + x.digits[j] * y.digits[i] + c;
			result.digits[k] = uv & maxDigitVal;
			c = uv >>> biRadixBits;
		}
		result.digits[i + n + 1] = c;
	}
	// Someone give me a logical xor, please.
	result.isNeg = x.isNeg != y.isNeg;
	return result;
}

function biMultiplyDigit(x, y)
{
	var n, c, uv;

	result = new BigInt();
	n = biHighIndex(x);
	c = 0;
	for (var j = 0; j <= n; ++j) {
		uv = result.digits[j] + x.digits[j] * y + c;
		result.digits[j] = uv & maxDigitVal;
		c = uv >>> biRadixBits;
	}
	result.digits[1 + n] = c;
	return result;
}

function arrayCopy(src, srcStart, dest, destStart, n)
{
	var m = Math.min(srcStart + n, src.length);
	for (var i = srcStart, j = destStart; i < m; ++i, ++j) {
		dest[j] = src[i];
	}
}

var highBitMasks = new Array(0x0000, 0x8000, 0xC000, 0xE000, 0xF000, 0xF800,
                             0xFC00, 0xFE00, 0xFF00, 0xFF80, 0xFFC0, 0xFFE0,
                             0xFFF0, 0xFFF8, 0xFFFC, 0xFFFE, 0xFFFF);

function biShiftLeft(x, n)
{
	var digitCount = Math.floor(n / bitsPerDigit);
	var result = new BigInt();
	arrayCopy(x.digits, 0, result.digits, digitCount,
	          result.digits.length - digitCount);
	var bits = n % bitsPerDigit;
	var rightBits = bitsPerDigit - bits;
	for (var i = result.digits.length - 1, i1 = i - 1; i > 0; --i, --i1) {
		result.digits[i] = ((result.digits[i] << bits) & maxDigitVal) |
		                   ((result.digits[i1] & highBitMasks[bits]) >>>
		                    (rightBits));
	}
	result.digits[0] = ((result.digits[i] << bits) & maxDigitVal);
	result.isNeg = x.isNeg;
	return result;
}

var lowBitMasks = new Array(0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F,
                            0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF,
                            0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF);

function biShiftRight(x, n)
{
	var digitCount = Math.floor(n / bitsPerDigit);
	var result = new BigInt();
	arrayCopy(x.digits, digitCount, result.digits, 0,
	          x.digits.length - digitCount);
	var bits = n % bitsPerDigit;
	var leftBits = bitsPerDigit - bits;
	for (var i = 0, i1 = i + 1; i < result.digits.length - 1; ++i, ++i1) {
		result.digits[i] = (result.digits[i] >>> bits) |
		                   ((result.digits[i1] & lowBitMasks[bits]) << leftBits);
	}
	result.digits[result.digits.length - 1] >>>= bits;
	result.isNeg = x.isNeg;
	return result;
}

function biMultiplyByRadixPower(x, n)
{
	var result = new BigInt();
	arrayCopy(x.digits, 0, result.digits, n, result.digits.length - n);
	return result;
}

function biDivideByRadixPower(x, n)
{
	var result = new BigInt();
	arrayCopy(x.digits, n, result.digits, 0, result.digits.length - n);
	return result;
}

function biModuloByRadixPower(x, n)
{
	var result = new BigInt();
	arrayCopy(x.digits, 0, result.digits, 0, n);
	return result;
}

function biCompare(x, y)
{
	if (x.isNeg != y.isNeg) {
		return 1 - 2 * Number(x.isNeg);
	}
	for (var i = x.digits.length - 1; i >= 0; --i) {
		if (x.digits[i] != y.digits[i]) {
			if (x.isNeg) {
				return 1 - 2 * Number(x.digits[i] > y.digits[i]);
			} else {
				return 1 - 2 * Number(x.digits[i] < y.digits[i]);
			}
		}
	}
	return 0;
}

function biDivideModulo(x, y)
{
	var nb = biNumBits(x);
	var tb = biNumBits(y);
	var origYIsNeg = y.isNeg;
	var q, r;
	if (nb < tb) {
		// |x| < |y|
		if (x.isNeg) {
			q = biCopy(bigOne);
			q.isNeg = !y.isNeg;
			x.isNeg = false;
			y.isNeg = false;
			r = biSubtract(y, x);
			// Restore signs, 'cause they're references.
			x.isNeg = true;
			y.isNeg = origYIsNeg;
		} else {
			q = new BigInt();
			r = biCopy(x);
		}
		return new Array(q, r);
	}

	q = new BigInt();
	r = x;

	// Normalize Y.
	var t = Math.ceil(tb / bitsPerDigit) - 1;
	var lambda = 0;
	while (y.digits[t] < biHalfRadix) {
		y = biShiftLeft(y, 1);
		++lambda;
		++tb;
		t = Math.ceil(tb / bitsPerDigit) - 1;
	}
	// Shift r over to keep the quotient constant. We'll shift the
	// remainder back at the end.
	r = biShiftLeft(r, lambda);
	nb += lambda; // Update the bit count for x.
	var n = Math.ceil(nb / bitsPerDigit) - 1;

	var b = biMultiplyByRadixPower(y, n - t);
	while (biCompare(r, b) != -1) {
		++q.digits[n - t];
		r = biSubtract(r, b);
	}
	for (var i = n; i > t; --i) {
    var ri = (i >= r.digits.length) ? 0 : r.digits[i];
    var ri1 = (i - 1 >= r.digits.length) ? 0 : r.digits[i - 1];
    var ri2 = (i - 2 >= r.digits.length) ? 0 : r.digits[i - 2];
    var yt = (t >= y.digits.length) ? 0 : y.digits[t];
    var yt1 = (t - 1 >= y.digits.length) ? 0 : y.digits[t - 1];
		if (ri == yt) {
			q.digits[i - t - 1] = maxDigitVal;
		} else {
			q.digits[i - t - 1] = Math.floor((ri * biRadix + ri1) / yt);
		}

		var c1 = q.digits[i - t - 1] * ((yt * biRadix) + yt1);
		var c2 = (ri * biRadixSquared) + ((ri1 * biRadix) + ri2);
		while (c1 > c2) {
			--q.digits[i - t - 1];
			c1 = q.digits[i - t - 1] * ((yt * biRadix) | yt1);
			c2 = (ri * biRadix * biRadix) + ((ri1 * biRadix) + ri2);
		}

		b = biMultiplyByRadixPower(y, i - t - 1);
		r = biSubtract(r, biMultiplyDigit(b, q.digits[i - t - 1]));
		if (r.isNeg) {
			r = biAdd(r, b);
			--q.digits[i - t - 1];
		}
	}
	r = biShiftRight(r, lambda);
	// Fiddle with the signs and stuff to make sure that 0 <= r < y.
	q.isNeg = x.isNeg != origYIsNeg;
	if (x.isNeg) {
		if (origYIsNeg) {
			q = biAdd(q, bigOne);
		} else {
			q = biSubtract(q, bigOne);
		}
		y = biShiftRight(y, lambda);
		r = biSubtract(y, r);
	}
	// Check for the unbelievably stupid degenerate case of r == -0.
	if (r.digits[0] == 0 && biHighIndex(r) == 0) r.isNeg = false;

	return new Array(q, r);
}

function biDivide(x, y)
{
	return biDivideModulo(x, y)[0];
}

function biModulo(x, y)
{
	return biDivideModulo(x, y)[1];
}

function biMultiplyMod(x, y, m)
{
	return biModulo(biMultiply(x, y), m);
}

function biPow(x, y)
{
	var result = bigOne;
	var a = x;
	while (true) {
		if ((y & 1) != 0) result = biMultiply(result, a);
		y >>= 1;
		if (y == 0) break;
		a = biMultiply(a, a);
	}
	return result;
}

function biPowMod(x, y, m)
{
	var result = bigOne;
	var a = x;
	var k = y;
	while (true) {
		if ((k.digits[0] & 1) != 0) result = biMultiplyMod(result, a, m);
		k = biShiftRight(k, 1);
		if (k.digits[0] == 0 && biHighIndex(k) == 0) break;
		a = biMultiplyMod(a, a, m);
	}
	return result;
}



var RSAAPP = {};

RSAAPP.NoPadding = "NoPadding";
RSAAPP.PKCS1Padding = "PKCS1Padding";
RSAAPP.RawEncoding = "RawEncoding";
RSAAPP.NumericEncoding = "NumericEncoding"

/*****************************************************************************/

function RSAKeyPair(encryptionExponent, decryptionExponent, modulus, keylen) {

this.e = biFromHex(encryptionExponent);
this.d = biFromHex(decryptionExponent);
this.m = biFromHex(modulus);

if (typeof(keylen) != 'number') { this.chunkSize = 2 * biHighIndex(this.m); }
else { this.chunkSize = keylen / 8; }

this.radix = 16;
/*
* Precalculate the stuff used for Barrett modular reductions.
*/
this.barrett = new BarrettMu(this.m);
}

/*****************************************************************************/

function encryptedString(key, s, pad, encoding) {
var a = new Array();                    // The usual Alice and Bob stuff
var sl = s.length;                      // Plaintext string length
var i, j, k;                            // The usual Fortran index stuff
var padtype;                            // Type of padding to do
var encodingtype;                       // Type of output encoding
var rpad;                               // Random pad
var al;                                 // Array length
var result = "";                        // Cypthertext result
var block;                              // Big integer block to encrypt
var crypt;                              // Big integer result
var text;                               // Text result
/*
* Figure out the padding type.
*/
if (typeof(pad) == 'string') {
  if (pad == RSAAPP.NoPadding) { padtype = 1; }
  else if (pad == RSAAPP.PKCS1Padding) { padtype = 2; }
  else { padtype = 0; }
}
else { padtype = 0; }
/*
* Determine encoding type.
*/
if (typeof(encoding) == 'string' && encoding == RSAAPP.RawEncoding) {
	encodingtype = 1;
}
else { encodingtype = 0; }

/*
* If we're not using Dave's padding method, we need to truncate long
* plaintext blocks to the correct length for the padding method used:
*
*       NoPadding    - key length
*       PKCS1Padding - key length - 11
*/
if (padtype == 1) {
  if (sl > key.chunkSize) { sl = key.chunkSize; }
}
else if (padtype == 2) {
  if (sl > (key.chunkSize-11)) { sl = key.chunkSize - 11; }
}
/*
* Convert the plaintext string to an array of characters so that we can work
* with individual characters.
*
* Note that, if we're talking to a real crypto library at the other end, we
* reverse the plaintext order to preserve big-endian order.
*/
i = 0;

if (padtype == 2) { j = sl - 1; }
else { j = key.chunkSize - 1; }

while (i < sl) {
  if (padtype) { a[j] = s.charCodeAt(i); }
  else { a[i] = s.charCodeAt(i); }

  i++; j--;
}
/*
* Now is the time to add the padding.
*
* If we're doing PKCS1v1.5 padding, we pick up padding where we left off and
* pad the remainder of the block.  Otherwise, we pad at the front of the
* block.  This gives us the correct padding for big-endian blocks.
*
* The padding is either a zero byte or a randomly-generated non-zero byte.
*/
if (padtype == 1) { i = 0; }

j = key.chunkSize - (sl % key.chunkSize);

while (j > 0) {
  if (padtype == 2) {
    rpad = Math.floor(Math.random() * 256);

    while (!rpad) { rpad = Math.floor(Math.random() * 256); }

    a[i] = rpad;
  }
  else { a[i] = 0; }

  i++; j--;
}
if (padtype == 2)
  {
  a[sl] = 0;
  a[key.chunkSize-2] = 2;
  a[key.chunkSize-1] = 0;
  }
/*
* Carve up the plaintext and encrypt each of the resultant blocks.
*/
al = a.length;

for (i = 0; i < al; i += key.chunkSize) {
  /*
  * Get a block.
  */
  block = new BigInt();

  j = 0;

  for (k = i; k < (i+key.chunkSize); ++j) {
    block.digits[j] = a[k++];
    block.digits[j] += a[k++] << 8;
  }
  /*
  * Encrypt it, convert it to text, and append it to the result.
  */
  crypt = key.barrett.powMod(block, key.e);
  if (encodingtype == 1) {
	  text = biToBytes(crypt);
  }
  else {
	  text = (key.radix == 16) ? biToHex(crypt) : biToString(crypt, key.radix);
  }
  result += text;
}
/*
* Return the result, removing the last space.
*/
//result = (result.substring(0, result.length - 1));
return result;
}

/*****************************************************************************/

function decryptedString(key, c) {
var blocks = c.split(" ");              // Multiple blocks of cyphertext
var b;                                  // The usual Alice and Bob stuff
var i, j;                               // The usual Fortran index stuff
var bi;                                 // Cyphertext as a big integer
var result = "";                        // Plaintext result
/*
* Carve up the cyphertext into blocks.
*/
for (i = 0; i < blocks.length; ++i) {
  /*
  * Depending on the radix being used for the key, convert this cyphertext
  * block into a big integer.
  */
  if (key.radix == 16) { bi = biFromHex(blocks[i]); }
  else { bi = biFromString(blocks[i], key.radix); }
  /*
  * Decrypt the cyphertext.
  */
  b = key.barrett.powMod(bi, key.d);
  /*
  * Convert the decrypted big integer back to the plaintext string.  Since
  * we are using big integers, each element thereof represents two bytes of
  * plaintext.
  */
  for (j = 0; j <= biHighIndex(b); ++j) {
    result += String.fromCharCode(b.digits[j] & 255, b.digits[j] >> 8);
  }
}
/*
* Remove trailing null, if any.
*/
if (result.charCodeAt(result.length - 1) == 0) {
  result = result.substring(0, result.length - 1);
}
/*
* Return the plaintext.
*/
return (result);
}

// var rsa_n = "DC1683EEAA2B709F97743773E18F53E3C9A15D12465CE82227A6E447E6EC590D0B569876BB631B0AB4D67881E7EC874066D6E022E2978B4C6EAA8903EC1774AAE040A3BEAF9C2B48730ADD46BEF5F0C8109DB6FCEFED0F4A84CCD7AFFDB4FB4214DA0D0FF1A8E2831E81FA4D7C2F4346184EEC87CE42230FC320B2B4E392ECDF"
function getPwd(pwd, rsa_n) {
    setMaxDigits(131);
    var key = new RSAKeyPair("10001", '', rsa_n);
    return encryptedString(key, pwd)
}

// console.log(getPwd('123456', rsa_n))
// 代码截止到2023/6/1号运行无误

再来看Python代码:

python
# -*- coding = utf-8 -*-
import re
import requests
import subprocess
from functools import partial

subprocess.Popen = partial(subprocess.Popen, encoding='utf-8')

import execjs

headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36"}

def getkey():
    # 登录页面的URL,从这个页面中获取getkey的值
    url = "https://login.shikee.com/"
    page = requests.get(url, headers=headers)
    # print(page.text)
    # 这个值在script标签中 <script type="text/javascript" src="/getkey?v=74200ed936619b9b62b855b59e9a6fb4"></script>
    # 我们用正则把它提取出来
    key = re.findall(r'<script type="text/javascript" src="/getkey\?v=(.*?)"></script>', page.text)[0]
    # print(key)
    # 提取出来值之后,再拼接成一个URL,而这个URL返回的文本文件中,就是具体的rsa_n这个公钥了
    getkey_url = "https://login.shikee.com/getkey?v={}".format(key)
    rsa_page = requests.get(getkey_url, headers=headers)
    # print(rsa_page.text)
    """
    var rsa_n = "DC1683EEAA2B709F97743773E18F53E3C9A15D12465CE82227A6E447E6EC590D0B569876BB631B0AB4D67881E7EC874066D6E022E2978B4C6EAA8903EC1774AAE040A3BEAF9C2B48730ADD46BEF5F0C8109DB6FCEFED0F4A84CCD7AFFDB4FB4214DA0D0FF1A8E2831E81FA4D7C2F4346184EEC87CE42230FC320B2B4E392ECDF";
    """
    # 再用正则把公钥提取出来
    rsa_n = re.findall(r'var rsa_n = "(.*?)";', rsa_page.text)[0]
    # print(rsa_n)
    return rsa_n

def main(pwd, rsa_n):
    """
    :param pwd: 明文密码
    :param rsa_n: 提前处理好的rsa_n公钥
    :return: 加密后的密码
    """
    f = open('./shikee.js', 'r', encoding='utf8')
    js = execjs.compile(f.read())
    f.close()
    res = js.call('getPwd', pwd, rsa_n)
    print(res)
    """
 	5787e6d0807f6ae002b7d2703f49f94c84bc76fb146c0970e6964821276790cf4ead90e64085d195b9fe10980898b7b02c82e5b14f260937118f8857348623476be1ea239546f3cb67629f43d98267133349d2058de625116b856efef004456600513c664fa08eb056a4fc5f1286f5c5ee7e0e2fdf64f4a644b158f10bfac23c
    """
    return res

if __name__ == '__main__':
    rsa_n = getkey()
    main("123456", rsa_n)

    # 代码截止到2023/6/1号运行无误

��行无误